Sains Malaysiana 53(1)(2024): 149-162

http://doi.org/10.17576/jsm-2024-5301-12

 

Nonenzymatic Sensor Based on Polythiophene/Titanium Dioxide (PTh/TiO2) Composite for the Determination of Malathion in Water

(Penderia Nonenzim Berdasarkan Komposit Politiofen/Titanium Dioksida (PTh/TiO2) untuk Penentuan Malation dalam Air)

 

SONGÜL ŞEN GÜRSOY1,* & DERYA KAHRAMAN2

 

1Burdur Mehmet Akif Ersoy University, Faculty of Arts and Sciences, Department of Chemistry, TR-15030 Burdur, Turkey

2Burdur Mehmet Akif Ersoy University, Institute of Applied and Natural Sciences, Department of Chemistry, TR-15030 Burdur, Turkey

 

Received: 7 April 2023/Accepted: 29 December 2023

 

Abstract

This study presents a novel nonenzymatic pesticide sensor utilizing a polythiophene/TiO2 (PTh/TiO2) film deposited on a glassy carbon (GC) electrode as the working electrode. The thiophene monomer was polymerized onto TiO2 by cyclic voltammetric method in the range of 0.0-2.5 V with 15 cycles at room temperature. The prepared electrode was used for the sensitive and selective detection of malathion thus providing the basis for facile electrochemical quantification. The surface morphology and crystal structure of the (PTh/TiO2) film were studied by SEM and XRD. FTIR was used for the structural analysis of (PTh/TiO2) film. FTIR results indicated that the PTh/TiO2composite structure was formed. The smooth surface morphology of PTh/TiO2 was supported by SEM results. XRD analysis verified that PTh is covered on TiO2 particles. The crystal phase of TiO2 was changed to amorph state after PTh modification. Additionally, the electrochemical characterization of polymer film and its response to malathion was examined by the CV method. Under optimized operational conditions, the response of the pesticide sensor was measured by CV in the range of -1 to 2.3 V versus the Ag/AgCl reference electrode due to the electrooxidation of malathion. The analysis focused on current values at -0.73 V, where the reduction of the PTh/TiO2 system occurred upon the addition of known amounts of malathion. The PTh/TiO2 composite film was sensitive to malathion in a linear range from 9.9 ppm to 436 ppm. The sensitivity was calculated as 57.5 μA/ µM cm2 whereas the detection limit was calculated as 7.45 µM.  The maximum reaction rate was estimated as 767 μA. The developed sensor also showed good selectivity and reproducibility. The nonenzymatic pesticide sensor was successfully applied to detect malathion in tap water with at least 90% recovery.

 

Keywords: Conducting polymer; pesticide; polythiophene; TiO2; sensor

 

Abstrak

Kajian ini membentangkan penderia racun perosak nonenzimatik baru yang menggunakan filem politiofen/TiO2 (PTh/TiO2) yang dimendapkan pada elektrod karbon berkaca (GC) sebagai elektrod kerja. Monomer tiofen telah dipolimerkan ke TiO2 melalui kaedah voltametri kitaran dalam julat 0.0-2.5 V dengan 15 kitaran pada suhu bilik. Elektrod yang disediakan telah digunakan untuk pengesanan sensitif dan memilih malation sekali gus menyediakan asas untuk pengkuantitian elektrokimia yang mudah. Morfologi permukaan dan struktur hablur filem (PTh/TiO2) telah dikaji oleh SEM dan XRD. FTIR digunakan untuk analisis struktur filem (PTh/TiO2). Keputusan FTIR menunjukkan bahawa struktur komposit PTh/TiO2 telah terbentuk. Morfologi permukaan licin PTh/TiO2 disokong oleh keputusan SEM. Analisis XRD mengesahkan bahawa PTh diliputi pada zarah TiO2. Fasa kristal TiO2 telah ditukar kepada keadaan amorf selepas pengubahsuaian PTh. Selain itu, pencirian elektrokimia filem polimer dan tindak balasnya terhadap malation telah diperiksa dengan kaedah CV. Di bawah keadaan operasi yang dioptimumkan, tindak balas penderia racun perosak diukur oleh CV dalam julat -1 hingga 2.3 V berbanding elektrod rujukan Ag/AgCl disebabkan oleh elektrooksidasi malation. Analisis tertumpu pada nilai semasa pada -0.73 V dengan pengurangan sistem PTh/TiO2 berlaku apabila penambahan jumlah malation yang diketahui. Filem komposit PTh/TiO2 adalah sensitif kepada malation dalam julat linear dari 9.9 ppm hingga 436 ppm. Kepekaan dihitung sebagai 57.5 μA/µM cm2 manakala had pengesanan dihitung sebagai 7.45 µM. Kadar tindak balas maksimum dianggarkan sebagai 767 μA. Sensor yang dibangunkan juga menunjukkan keterpilihan dan kebolehulangan yang baik. Penderia racun perosak nonenzim telah berjaya digunakan untuk mengesan malation dalam air paip dengan sekurang-kurangnya 90% pemulihan.

 

Kata kunci: Penderia; polimer pengalir; politiofen; racun perosak; TiO2

 

REFERENCES

Anandhakumar, S., Dhanalakshmi, K. & Mathiyarasu, J. 2014. Non-enzymatic organophosphorus pesticide detection using gold atomic cluster modified electrode. Electrochem. Commun. 38: 15-18.

Barahona, F., Bardliving, C.L., Phifer, A., Bruno, J.G. & Batt, C.A. 2013. An aptasensor based on polymer-gold nanoparticle composite microspheres for the detection of malathion using surface enhanced. Raman spectroscopy. Ind. Biotechnol. 9(1): 42-50.

Bilal, S., Nasir, M., Hassan, M.M., Fayyaz ur Rehman, M., Sami, A.J. & Hayat, A. 2022. A novel construct of an electrochemical acetylcholinesterase biosensor for the investigation of malathion sensitivity to three different insect species using a NiCr2O4/g-C3N4 composite integrated pencil graphite electrode. RSC Adv. 12: 16860-16874.

Bolat, G. & Abaci, S. 2018. Non-enymatic electrochemical sensing of malathion pesticide in tomato and apple samples based on gold nanoparticles-chitosan-ıonic liquid hybrid nanocomposite. Sensors 18: 773-789.

Cesarino, I., Moraes, F.C., Lanza, M.R.V. & Machado, S.A.S. 2012. Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline–carbon nanotubes. Food Chem. 135: 873-879.

Chang, H.C., Twu, M.J., Hsu, C.Y., Hsu, R.Q. & Kuo, C.G. 2014. Improved performance for dye-sensitized solar cells using a compact TiO2 layer grown by sputtering. Int. J. Photoenergy 23: 380120.

Ebrahimi, M., Kermanpur, A., Atapour, M., Adhami, S., Heidari, R.H., Khorshidi, E., Irannejad, N. & Rezaie, B. 2020. Performance enhancement of mesoscopic perovskite solar cells with GQDs-doped TiO2 electron transport layer. Sol. Energy Mater. and Sol. Cells 208: 110407.

Feng, C., Xu, Q., Qiu, X., Jin, Y., Ji, J., Lin, Y., Le, S., Wang, G. & Lu, D. 2020. Comprehensive strategy for analysis of pesticide multi-residues in food by GC–MS/MS and UPLC-Q-Orbitrap. Food Chemistry 320: 126576.

Fu, M., Shi, G., Chen, F. & Hong, X. 2002. Doping level change of polythiophene film during its electrochemical growth process. Chem. Chem. Phys. 4: 2685-2690.

García, J.V., Rocha, M.I., March, C., García, P., Francis, L.A., Montoya, A., Arnau, A. & Jimenez, Y. 2014. Love mode surface acoustic wave and high fundamental frequency quartz crystal microbalance immunosensors for the detection of carbaryl pesticide. Proc. Eng. 87: 759-762.

Gueye, M.N., Carella, A., Vincent, J.F., Demadrille, R. & Simonato, J.P. 2020. Progress in understanding structure and transport properties of PEDOT-based materials: A critical review. Prog. Mater. Sci. 108: 100616.

Gursoy, O., Sen Gursoy, S., Cogal, S. & Celik Cogal, G. 2018. Development of a new two-enzyme biosensor based on poly(pyrrole-Co-3,4-ethylenedioxythiophene) for lactose determination in milk. Polym. Eng. Sci. 58: 839-848.

He, C., Yan, R., Gao, X., Xue, Q. & Wang, H. 2023. Non-enzymatic electrochemical malathion sensor based on bimetallic Cu-Co metal-organic gels modified glassy carbon electrode. Sensors and Actuators B: Chemical 385: 133697.

Ji, L. & Zhang, J. 2009. Synthesis, characterization and electrorheological properties of polyaniline/titanate core-shell composite. Journal of Macromolecular Science, Part A 7(46): 688-693.

Kawagishi, T., Adachi, Y. & Kobayashi, T. 2023. Photovoltaic performances of TiO2/Se heterojunction devices with different crystallographic structures of sputter-deposited TiO2 thin films. Materials Chemistry and Physics 297: 127371.

Kushwaha, C.S. & Shukla, S.K. 2019. Non-enzymatic potentiometric malathion sensing over chitosan-grafted polyaniline hybrid electrode. J. Mater. Sci. 54(15): 10846-10855.

Kwon, C.H., Shin, H., Kim, J.H., Choi, W.S. & Yoon, K.H. 2004. Degradation of methylene blue via photocatalysis of titanium dioxide. Mater. Chem. Phys. 86(1): 78-82.

Li, Y., Vamvounis, G. & Holdcroft, S. 2002. Tuning optical properties and enhancing solid-state emission of poly(thiophene)s by molecular control: A postfunctionalization approach. Macromolecules 35(18): 6900-6906.

Li, S., Qu, L.M., Wang, J.F., Ran, X.Q. & Niu, X. 2020. Acetylcholinesterase based rGO-TEPA-Copper nanowires biosensor for detecting malathion. International Journal of Electrochemical Science 15(1): 505-514.

Liu, Y.H., Liu, C., Wang, X.H., Li, T. & Zhang, X. 2023. Electrochemical sensor for sensitive detection of bisphenol A based on molecularly imprinted TiO2 with oxygen vacancy. Biosensors and Bioelectronics 237: 115520.

Ma, L., He, Y., Wang, Y., Wang, Y., Li, R., Huang, Z., Jiang, Y. & Gao, J. 2019. Nanocomposites of Pt nanoparticles anchored on UiO66-NH2 as carriers to construct acetylcholinesterase biosensors for organophosphorus pesticide detection. Electrochimica Acta 318: 525-533.

Malanina, A., Kuzin, Y., Khadieva, A., Shibaeva, K., Padnya, P., Stoikov, I. & Evtugyn, G. 2023. Voltammetric sensor for doxorubicin determination based on self-assembled DNA-polyphenothiazine composite. Nanomaterials 13(16): 2369.

Migliorini, F.L., Sanfelice, R.C., Mercante, L.A., Facure, M.H.M. & Correa, D.S. 2020. Electrochemical sensor based on polyamide 6/polypyrrole electrospun nanofibers coated with reduced graphene oxide for malathion pesticide detection. Mater. Res. Express 7: 015601.

Mitra, S., Chakraborty, A.J., Tareq, A.M., Bin Emran, T., Nainu, F., Khusro, A., Idris, A.M., Khandaker, M.U., Osman, H., Alhumaydhi, F.A. & Simal-Gandara, J. 2022. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University - Science 34(3): 101865.

Mugundan, S., Rajamannan, B., Viruthagiri, G., Shanmugam, N., Gobi, R. & Praveen, P. 2015. Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol-gel technique. App. Nanosci. 5: 449-456.

Navarrete-Meneses, M.P., Salas-Labadía, C., Sanabrais-Jiménez, M., Santana-Hernández, J., Serrano-Cuevas, A., Juárez-Velázquez, R. & Pérez-Vera, P. 2017. Exposure to the insecticides permethrin and malathion induces leukemia and lymphoma-associated gene aberrations in vitro. Toxicol. In Vitro 44: 17-26.

Nejad, S.A.T., Soleimani-Gorgani, A. & Pishvaei, M. 2023. Multifunctional screen-printed films using polymer nanocomposite based on PPy/TiO2: Conductive, photocatalytic, self-cleaning and antibacterial functionalities. Iran Polym. J. 32: 647-659.

Rahman, S., Rahman Khan, M.M., Deb, B., Dana, S.I. & Ahmed, M.K. 2023. Effective and simple fabrication of pyrrole and thiophene-based poly (Py-co-Th)/ZnO composites for high photocatalytic performance. South African Journal of Chemical Engineering 43: 303-311.

Randles, J.E.B. 1948. A cathode ray polarograph. Part II. The current-voltage curves. Trans. Faraday Soc. 44: 327-338.

Sari, B., Talu, M., Yildirim, F. & Balci, E.K. 2003. Synthesis and characterization of polyurethane/polythiophene conducting copolymer by electrochemical method. Appl. Surf. Sci. 205: 27-38.

Sen Gursoy, S., Yildiz, A., Celik Cogal, G. & Gursoy, O. 2020. A novel lactose biosensor based on electrochemically synthesized 3,4-ethylenedioxythiophene/thiophene (EDOT/Th) copolymer. Open Chem. 18: 974-985.

Senthilkumar, B., Thenamirtham, P. & Selvan, R.K. 2011. Structural and electrochemical properties of polythiophene. Appl. Surf. Sci. 257: 9063-9067.

Serag, E., El-Maghraby, A., Hassan, N. & El Nemra, A. 2021. CuO@MWCNTs nanocomposite as non-enzyme electrochemical sensor for the detection of Malathion in seawater. Desalination and Water Treatment 236: 240-249.

Ševčík, A. 1948. Oscillographic polarography with periodical triangular voltage. Collect Czech Chem. Commun. 13: 349-377.

Shirgaonkar, D.B., Yewale, M.A., Shin, D.K., Pawar, S.D., Gunjakar, J.L., Mathad, S.N., Deokate, R.J. & Nakate, U.T. 2024. Nanofibrous polythiophene-SnO2 composite films: A novel approach for low-temperature NO2 sensing. Materials Science and Engineering: B 299: 116959.

Sing, A., Sinsinbar, G., Choudhary, M., Kumar, V., Pasricha, R., Verma, H.N., Singh, S.P. & Arora, K. 2013. Graphene oxide-chitosan nanocomposite based electrochemical DNA biosensor for detection of typhoid. Sens. Actuators B Chem. 185: 675-684.

Song, Y., Chen, J., Sun, M., Gong, C., Shen, Y., Song, Y. & Wang, L. 2016. A simple electrochemical biosensor based on AuNPs/MPS/Au electrode sensing layer for monitoring carbamate pesticides in real samples. J. Hazard Mater. 304: 103-109.

Su, D., Li, H., Yan, Xu., Lin, Y. & Lu, G. 2021. Biosensors based on fluorescence carbon nanomaterials for detection of pesticides. TrAC Trends in Analytical Chemistry 134: 116126.

Pathak, V.M., Verma, V.K., Rawat, B.S., Kaur, B., Babu, N., Sharma, A., Dewali, S., Yadav, M., Kumari, R., Singh, S., MohapatraA., Pandey, V., Rana, N. & Maria, J. 2022. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front Microbiol. 13: 962619.

Tian, X., Liu, L., Li, Y., Yang, C., Zhou, Z., Nie, Y. & Wang, Y. 2018. Nonenzymatic electrochemical sensor based on CuO-TiO2 for sensitive and selective detection of methyl parathion pesticide in ground water. Sensors and Actuators B: Chemical 256: 135-142.

Wang, M., Huang, J., Wang, M., Zhang, D. & Chen, J. 2014. Electrochemical nonenzymatic sensor based on CoO decorated reduced graphene oxide for the simultaneous determination of carbofuran and carbaryl in fruits and vegetables. Food Chem. 151: 191-197.

Xie, Y., Tu, X., Ma, X., Fang, Q., Liu, G., Dai, R., Qu, F., Yu, Y., Lu, L. & Huang, X. 2019. A CuO-CeO2 composite prepared by calcination of a bimetallic metal-organic framework for use in an enzyme-free electrochemical inhibition assay for malathion. Microchim. Acta 186: 567.

Zhang, D., Liang, P., Chen, W., Tang, Z., Li, C., Xiao, K., Jin, S., Ni, D. & Yu, Z. 2021. Rapid field trace detection of pesticide residue in food based on surface-enhanced Raman spectroscopy. Microchim. Acta 188: 370.

 

*Corresponding author; email: ssen@mehmetakif.edu.tr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous