Sains Malaysiana
53(1)(2024): 149-162
http://doi.org/10.17576/jsm-2024-5301-12
Nonenzymatic
Sensor Based on Polythiophene/Titanium Dioxide (PTh/TiO2) Composite
for the Determination of Malathion in Water
(Penderia Nonenzim
Berdasarkan Komposit Politiofen/Titanium Dioksida (PTh/TiO2) untuk
Penentuan Malation dalam Air)
SONGÜL ŞEN GÜRSOY1,* & DERYA KAHRAMAN2
1Burdur
Mehmet Akif Ersoy University, Faculty of Arts and Sciences, Department of Chemistry, TR-15030 Burdur, Turkey
2Burdur Mehmet Akif Ersoy University, Institute of Applied and
Natural Sciences, Department of Chemistry, TR-15030 Burdur,
Turkey
Received:
7 April 2023/Accepted: 29 December 2023
Abstract
This study presents a novel nonenzymatic pesticide sensor utilizing a polythiophene/TiO2 (PTh/TiO2)
film deposited on a glassy carbon (GC) electrode as the working electrode. The thiophene monomer was polymerized onto TiO2 by
cyclic voltammetric method in the range of 0.0-2.5 V
with 15 cycles at room temperature. The prepared electrode was used for the
sensitive and selective detection of malathion thus providing the basis for
facile electrochemical quantification. The surface morphology and crystal
structure of the (PTh/TiO2) film were
studied by SEM and XRD. FTIR was used for the structural analysis of (PTh/TiO2) film. FTIR results
indicated that the PTh/TiO2composite
structure was formed. The smooth surface
morphology of PTh/TiO2 was supported by SEM results. XRD analysis verified that PTh is covered on TiO2 particles. The crystal phase of TiO2 was changed to amorph state
after PTh modification. Additionally, the electrochemical
characterization of polymer film and its response to malathion was examined by
the CV method. Under optimized operational conditions, the response of the
pesticide sensor was measured by CV in the range of -1 to 2.3 V versus the Ag/AgCl reference electrode due to the electrooxidation of malathion. The analysis focused on current values at -0.73 V,
where the reduction of the PTh/TiO2 system occurred
upon the addition of known amounts of malathion. The PTh/TiO2 composite film was sensitive to malathion in a linear range from 9.9 ppm
to 436 ppm. The sensitivity was calculated as 57.5 μA/
µM cm2 whereas the detection limit was calculated as 7.45 µM. The maximum reaction rate was estimated as
767 μA. The developed sensor also showed good selectivity and
reproducibility. The nonenzymatic pesticide sensor
was successfully applied to detect malathion in tap water with at least 90%
recovery.
Keywords: Conducting polymer;
pesticide; polythiophene; TiO2; sensor
Abstrak
Kajian
ini membentangkan penderia racun perosak nonenzimatik baru yang menggunakan
filem politiofen/TiO2 (PTh/TiO2) yang dimendapkan pada
elektrod karbon berkaca (GC) sebagai elektrod kerja. Monomer tiofen telah
dipolimerkan ke TiO2 melalui kaedah voltametri kitaran dalam julat
0.0-2.5 V dengan 15 kitaran pada suhu bilik. Elektrod yang disediakan telah
digunakan untuk pengesanan sensitif dan memilih malation sekali gus
menyediakan asas untuk pengkuantitian elektrokimia yang mudah. Morfologi
permukaan dan struktur hablur filem (PTh/TiO2) telah dikaji oleh SEM
dan XRD. FTIR digunakan untuk analisis struktur filem (PTh/TiO2).
Keputusan FTIR menunjukkan bahawa struktur komposit PTh/TiO2 telah
terbentuk. Morfologi permukaan licin PTh/TiO2 disokong oleh
keputusan SEM. Analisis XRD mengesahkan bahawa PTh diliputi pada zarah TiO2.
Fasa kristal TiO2 telah ditukar kepada keadaan amorf selepas
pengubahsuaian PTh. Selain itu, pencirian elektrokimia filem polimer dan tindak
balasnya terhadap malation telah diperiksa dengan kaedah CV. Di bawah keadaan
operasi yang dioptimumkan, tindak balas penderia racun perosak diukur oleh CV
dalam julat -1 hingga 2.3 V berbanding elektrod rujukan Ag/AgCl disebabkan oleh
elektrooksidasi malation. Analisis tertumpu pada nilai semasa pada -0.73 V
dengan pengurangan sistem PTh/TiO2 berlaku apabila penambahan jumlah
malation yang diketahui. Filem komposit PTh/TiO2 adalah sensitif
kepada malation dalam julat linear dari 9.9 ppm hingga 436 ppm. Kepekaan
dihitung sebagai 57.5 μA/µM cm2 manakala had pengesanan
dihitung sebagai 7.45 µM. Kadar tindak balas maksimum dianggarkan sebagai 767
μA. Sensor yang dibangunkan juga menunjukkan keterpilihan dan
kebolehulangan yang baik. Penderia racun perosak nonenzim telah berjaya
digunakan untuk mengesan malation dalam air paip dengan sekurang-kurangnya 90%
pemulihan.
Kata
kunci: Penderia; polimer pengalir; politiofen; racun perosak; TiO2
REFERENCES
Anandhakumar, S., Dhanalakshmi, K. & Mathiyarasu,
J. 2014. Non-enzymatic organophosphorus pesticide detection using gold atomic
cluster modified electrode. Electrochem. Commun. 38: 15-18.
Barahona, F., Bardliving,
C.L., Phifer, A., Bruno, J.G. & Batt,
C.A. 2013. An aptasensor based on polymer-gold
nanoparticle composite microspheres for the detection of malathion using
surface enhanced. Raman spectroscopy. Ind. Biotechnol. 9(1): 42-50.
Bilal, S., Nasir, M., Hassan,
M.M., Fayyaz ur Rehman, M., Sami, A.J. & Hayat, A. 2022. A
novel construct of an electrochemical acetylcholinesterase biosensor for the
investigation of malathion sensitivity to three different insect species using
a NiCr2O4/g-C3N4 composite
integrated pencil graphite electrode. RSC Adv. 12: 16860-16874.
Bolat, G. & Abaci, S. 2018. Non-enymatic electrochemical sensing of malathion pesticide in
tomato and apple samples based on gold nanoparticles-chitosan-ıonic liquid
hybrid nanocomposite. Sensors 18:
773-789.
Cesarino, I., Moraes, F.C., Lanza,
M.R.V. & Machado, S.A.S. 2012.
Electrochemical detection of carbamate pesticides in fruit and vegetables with
a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline–carbon nanotubes. Food Chem. 135: 873-879.
Chang, H.C., Twu, M.J., Hsu,
C.Y., Hsu, R.Q. & Kuo, C.G. 2014. Improved
performance for dye-sensitized solar cells using a compact TiO2 layer
grown by sputtering. Int. J. Photoenergy 23: 380120.
Ebrahimi, M., Kermanpur,
A., Atapour, M., Adhami,
S., Heidari, R.H., Khorshidi,
E., Irannejad, N. & Rezaie,
B. 2020. Performance enhancement of mesoscopic perovskite solar cells with
GQDs-doped TiO2 electron transport layer. Sol. Energy Mater. and Sol. Cells 208: 110407.
Feng, C., Xu, Q., Qiu, X., Jin, Y., Ji, J., Lin, Y., Le, S., Wang, G. & Lu, D.
2020. Comprehensive strategy for analysis of pesticide multi-residues in food
by GC–MS/MS and UPLC-Q-Orbitrap. Food Chemistry 320: 126576.
Fu, M., Shi, G., Chen, F. & Hong, X. 2002. Doping level change of polythiophene film during its electrochemical growth process. Chem. Chem. Phys. 4: 2685-2690.
García, J.V., Rocha, M.I., March, C., García, P., Francis, L.A., Montoya, A., Arnau,
A. & Jimenez, Y. 2014. Love mode surface acoustic wave and high fundamental
frequency quartz crystal microbalance immunosensors for the detection of carbaryl pesticide. Proc. Eng. 87: 759-762.
Gueye, M.N., Carella, A., Vincent, J.F., Demadrille,
R. & Simonato,
J.P. 2020. Progress in understanding structure and transport properties of
PEDOT-based materials: A critical review. Prog. Mater. Sci. 108: 100616.
Gursoy,
O., Sen Gursoy, S., Cogal,
S. & Celik Cogal, G. 2018. Development of a new two-enzyme
biosensor based on poly(pyrrole-Co-3,4-ethylenedioxythiophene)
for lactose determination in milk. Polym. Eng. Sci. 58: 839-848.
He, C., Yan, R., Gao, X., Xue,
Q. & Wang, H. 2023. Non-enzymatic electrochemical malathion sensor based on
bimetallic Cu-Co metal-organic gels modified glassy carbon electrode. Sensors and Actuators B: Chemical 385:
133697.
Ji, L. & Zhang, J. 2009.
Synthesis, characterization and electrorheological properties of polyaniline/titanate core-shell composite. Journal of Macromolecular Science, Part A 7(46): 688-693.
Kawagishi,
T., Adachi, Y. & Kobayashi, T. 2023. Photovoltaic performances of TiO2/Se
heterojunction devices with different crystallographic structures of
sputter-deposited TiO2 thin films. Materials Chemistry and Physics 297: 127371.
Kushwaha, C.S. & Shukla, S.K. 2019.
Non-enzymatic potentiometric malathion sensing over chitosan-grafted
polyaniline hybrid electrode. J. Mater.
Sci. 54(15): 10846-10855.
Kwon,
C.H., Shin, H., Kim, J.H., Choi, W.S. & Yoon, K.H. 2004. Degradation of methylene blue via photocatalysis of titanium dioxide. Mater. Chem. Phys. 86(1): 78-82.
Li, Y., Vamvounis,
G. & Holdcroft, S. 2002. Tuning optical properties and enhancing
solid-state emission of poly(thiophene)s by molecular
control: A postfunctionalization approach. Macromolecules 35(18): 6900-6906.
Li, S., Qu, L.M., Wang, J.F., Ran, X.Q.
& Niu, X. 2020. Acetylcholinesterase based rGO-TEPA-Copper nanowires biosensor for detecting
malathion. International Journal of
Electrochemical Science 15(1): 505-514.
Liu, Y.H., Liu, C., Wang, X.H., Li, T. & Zhang, X.
2023. Electrochemical sensor for sensitive detection of bisphenol A based on molecularly imprinted TiO2 with oxygen vacancy. Biosensors and Bioelectronics 237:
115520.
Ma, L., He, Y., Wang, Y., Wang, Y., Li,
R., Huang, Z., Jiang, Y. & Gao, J. 2019. Nanocomposites of Pt nanoparticles
anchored on UiO66-NH2 as carriers to construct acetylcholinesterase
biosensors for organophosphorus pesticide detection. Electrochimica Acta 318:
525-533.
Malanina, A., Kuzin,
Y., Khadieva, A., Shibaeva,
K., Padnya, P., Stoikov, I.
& Evtugyn, G. 2023. Voltammetric sensor for doxorubicin determination based on self-assembled DNA-polyphenothiazine composite. Nanomaterials 13(16):
2369.
Migliorini, F.L., Sanfelice,
R.C., Mercante, L.A., Facure,
M.H.M. & Correa,
D.S. 2020. Electrochemical sensor based on polyamide 6/polypyrrole electrospun nanofibers coated with reduced graphene
oxide for malathion pesticide detection. Mater.
Res. Express 7: 015601.
Mitra, S., Chakraborty, A.J., Tareq, A.M., Bin Emran, T., Nainu, F., Khusro, A., Idris,
A.M., Khandaker, M.U., Osman, H., Alhumaydhi,
F.A. & Simal-Gandara, J. 2022. Impact of heavy
metals on the environment and human health: Novel therapeutic insights to
counter the toxicity. Journal of King
Saud University - Science 34(3): 101865.
Mugundan,
S., Rajamannan, B., Viruthagiri,
G., Shanmugam, N., Gobi, R. & Praveen, P. 2015.
Synthesis and characterization of undoped and
cobalt-doped TiO2 nanoparticles via sol-gel technique. App. Nanosci. 5: 449-456.
Navarrete-Meneses,
M.P., Salas-Labadía, C., Sanabrais-Jiménez,
M., Santana-Hernández, J., Serrano-Cuevas, A., Juárez-Velázquez,
R. & Pérez-Vera,
P. 2017. Exposure to the insecticides permethrin and malathion induces leukemia
and lymphoma-associated gene aberrations in vitro. Toxicol. In Vitro 44: 17-26.
Nejad, S.A.T., Soleimani-Gorgani, A. & Pishvaei,
M. 2023. Multifunctional screen-printed films using polymer nanocomposite based
on PPy/TiO2: Conductive, photocatalytic,
self-cleaning and antibacterial functionalities. Iran Polym. J. 32: 647-659.
Rahman,
S., Rahman Khan, M.M., Deb, B., Dana, S.I. & Ahmed, M.K. 2023. Effective
and simple fabrication of pyrrole and thiophene-based
poly (Py-co-Th)/ZnO composites for high photocatalytic performance. South African Journal of Chemical Engineering 43: 303-311.
Randles, J.E.B. 1948. A cathode ray polarograph.
Part II. The current-voltage curves. Trans.
Faraday Soc. 44: 327-338.
Sari, B., Talu, M., Yildirim, F. & Balci,
E.K. 2003. Synthesis and characterization of polyurethane/polythiophene conducting copolymer by electrochemical method. Appl. Surf. Sci. 205: 27-38.
Sen Gursoy,
S., Yildiz, A., Celik Cogal, G. & Gursoy,
O. 2020. A novel lactose biosensor based on electrochemically synthesized
3,4-ethylenedioxythiophene/thiophene (EDOT/Th) copolymer. Open
Chem. 18: 974-985.
Senthilkumar,
B., Thenamirtham, P. & Selvan, R.K. 2011.
Structural and electrochemical properties of polythiophene. Appl. Surf. Sci. 257: 9063-9067.
Serag, E., El-Maghraby,
A., Hassan, N. & El Nemra, A. 2021. CuO@MWCNTs nanocomposite as non-enzyme electrochemical
sensor for the detection of Malathion in seawater. Desalination and Water Treatment 236: 240-249.
Ševčík, A. 1948. Oscillographic polarography with periodical triangular voltage. Collect Czech Chem. Commun. 13: 349-377.
Shirgaonkar, D.B., Yewale, M.A., Shin,
D.K., Pawar, S.D., Gunjakar,
J.L., Mathad, S.N., Deokate,
R.J. & Nakate, U.T. 2024. Nanofibrous polythiophene-SnO2 composite films: A novel approach for
low-temperature NO2 sensing. Materials
Science and Engineering: B 299: 116959.
Sing, A., Sinsinbar, G., Choudhary, M., Kumar, V., Pasricha,
R., Verma, H.N., Singh, S.P. & Arora, K. 2013. Graphene
oxide-chitosan nanocomposite based electrochemical DNA biosensor for detection
of typhoid. Sens. Actuators B Chem. 185: 675-684.
Song, Y., Chen, J., Sun,
M., Gong, C., Shen, Y., Song, Y. & Wang, L. 2016. A simple electrochemical biosensor based
on AuNPs/MPS/Au electrode sensing layer for
monitoring carbamate pesticides in real samples. J. Hazard Mater. 304: 103-109.
Su, D., Li, H., Yan, Xu.,
Lin, Y. & Lu, G. 2021. Biosensors based on fluorescence carbon
nanomaterials for detection of pesticides. TrAC Trends in Analytical Chemistry 134: 116126.
Pathak, V.M., Verma, V.K., Rawat, B.S., Kaur, B., Babu, N., Sharma, A., Dewali, S., Yadav, M., Kumari, R., Singh, S., Mohapatra, A., Pandey, V., Rana, N. & Maria, J. 2022. Current status of pesticide effects on
environment, human health and it’s eco-friendly
management as bioremediation: A comprehensive review. Front Microbiol. 13: 962619.
Tian, X., Liu, L., Li, Y., Yang, C., Zhou, Z., Nie, Y. & Wang, Y. 2018. Nonenzymatic electrochemical sensor based on CuO-TiO2 for sensitive and selective
detection of methyl parathion pesticide in ground water. Sensors and Actuators B: Chemical 256: 135-142.
Wang, M., Huang, J.,
Wang, M., Zhang, D. & Chen, J. 2014. Electrochemical nonenzymatic sensor based on CoO decorated reduced graphene oxide
for the simultaneous determination of carbofuran and carbaryl in fruits and vegetables. Food Chem. 151:
191-197.
Xie, Y., Tu, X., Ma, X., Fang, Q.,
Liu, G., Dai, R., Qu, F., Yu, Y., Lu, L. & Huang, X. 2019. A CuO-CeO2 composite
prepared by calcination of a bimetallic metal-organic framework for use in an
enzyme-free electrochemical inhibition assay for malathion. Microchim. Acta 186: 567.
Zhang, D., Liang, P.,
Chen, W., Tang, Z., Li, C., Xiao, K., Jin, S.,
Ni, D. & Yu, Z. 2021. Rapid field trace detection of pesticide residue
in food based on surface-enhanced Raman spectroscopy. Microchim. Acta 188: 370.
*Corresponding author; email:
ssen@mehmetakif.edu.tr
|